
SERIES, < 50 KRad/Si - TID, Commercial Space

Crystal Oscillator | 3.3V | CMOS | 5x7mm Ceramic SMD | SmallSat-CubeSat

5x7 mm Ceramic SMD Package (Industry Standard)

Features

- Hi-Rel Design and Manufacture
- Proven High Shock Crystal Support
- ECCN EAR 99

Customer Support & Service

95 to 130

- High-Shock & Vibration Configuration
- Small Hi-Rel Package

±60

Mission Life Duration Choice

■ Mission Success | Life Options 6 Months to 5 Years

Designed for > 20,000 Hours Life at +125°C

Radiation Test Data Available upon Request

0.283

Design & Configuration Control

US Manufacture

Electrical
SPECIFICATIONS

SPECIFI	CATION	S		•								
Mission L	ife / Scree	ning Code	Frequency	Supply	Rise/Fall	Symmetry	Aging	Freque	ncy Stability	y Vs. Tempe	rature	
A 6 Months to 1 year	1 Year to 2 years	3 Years to 5 years	Range (MHz)	Current @ 3.3V ±10% (mA)	Time (tr/tf) max (nsec)	min / max (%)	per year max <u>1</u> / (ppm)	-55°C to +125°C (ppm)	-55°C to +125°C (ppm)	-40°C to +105°C (ppm)	-40°C to +85°C (ppm)	
•	•	V						CODE	CODE	CODE	CODE	•
CODE	CODE	CODE						A	В	C	D	stal
01	02	03	0.5 to 0.9	1	3	48/52	±10	±100	±75	±60	±50	tem cod
04	05	06	1 to 7.9	1.2	3	48/52	±10	±100	±75	±60	±50	cou
07	08	09	8 to 15.9	3	3	45/55	±10	±100	±75	±60	±50	
11	12	13	16 to 49.9	6	3	45/55	±10	±100	±75	±60	±50	
14	15	16	50 to 79.9	8	2	40/60	±10	±100	±75	±60	±50	
17	18	19	80 to 94.9	10	2	40/60	±10	±100	±75	±60	±50	

tability vs. emperature

22 See reverse side for screening details

21

CMOS Output, 15 pF Load Output Voltage - Logic "0" is Vcc x 0.1 Vdc Output Voltage - Logic "1" is Vcc is 0.9 Vdc Start-up Time: 10 msec max

25

1/ Frequency Aging Limit

±10

±1.5 ppm Max change over 30 days Projected max change for 1 year after 30 days ±10 ppm

±75

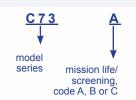
±100

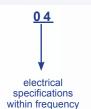
±50

Please Contact Us for Specification Options that are Outside of or beyond those Shown in the Table Above

Standard PAD CONFIGURATION
* Enable, Logic 1 Disable, Logic 0
Terminate any unused pads, (they are not terminated internally).

40/60


Pin Number	Function
1	Ourput Enable (Tri-state)*
2	Ground (case)
3	Output
4	Supply V (Vcc)


How To ORDER

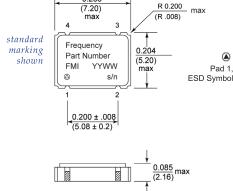
Huntington Beach, CA 92649

23

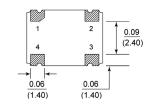
MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2015 Pb-free RoHS Certified

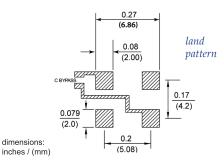
range / tristate

option code



output frequency


example:


1 M 0 0 0 0 0 0

C73A04D-1M000000

Mechanical SPECIFICATIONS

An external bypass capacitor 0.01µF is required between Vcc and GND

FREQUENCY MANAGEMENT | International 15302 Bolsa Chica Street

Ph. 714 373 8100 Fx. 714 373 8700

Leaded options for 5x7 mm Ceramic SMD for Space, Please Inquire!

New 5x3.2 Radiation Tolerant Oscillator for Space, Please Inquire!

ission Life Screenin	g- A, B & C OPTIONS		CODI	E
Screening	Method Options:	Α	В	
Ion-Destruct Bond Pull	MIL-STD-883, Method 2023	•	•	
nternal Visual	MIL-STD-883, Method 2017	•	•	
Stabilization (Vacuum) Bake	MIL-STD-883, Method 1008, Condition C, 150°C, 24 hours min	•	•	
emperature Cycling	MIL-STD-883, Method 1010, Condition B, 10 Cycles	•	•	
Constant Acceleration	MIL-STD-883, Method 2001, Condition A (Y1 only, 5000 g's)		•	
PIND Test	MIL-STD-883, Method 2020, Condition B, 5 passes max			
Seal: Fine Leak	MIL-STD-883, Method 1014, Condition A1			
	MIL-STD-202, Method 112, Condition C, 111A		•	
Seal: Gross Leak	MIL-STD-202, Method 112, Condition D	•	•	
Electrical Test	Functional Test Only at +23°C	•	•	
Marking & Serialization	MIL-STD-1285	•	•	
Electrical Test	Nominal Vcc & Extremes and Nominal Temp and Extremes		•	
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min		•	
Burn-in (no-load)	+125°C, Nominal Supply Voltage and Burn-in load, 48 hours min	•		
nterim Electrical	Functional Test Only			
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min			
) Frequency stability is tested	ncy, output waveform, are tested at +23°C ±2°C over the specified temperature range; at both minimum of 5 temperature increments is by lot # and then serial #	•	•	
Radiography	MIL-STD-883, Method 2012			
requency Aging	MIL-PRF-55310, +70°C Condition			
requency/Temperature Stability	MIL-PRF-55310, Over temperature extremes, 20 points equally spaced			
External Visual & Mechanical	MIL-STD-883, Method 2009		•	

•	Designed Specifically for Lower-cost Space Missions
SmallSat	CubeSat

Env	vironmental C	OMPLIANCE			
Env	ironmental	Specification	Method	Condition	
Vibra	ation – Sine	MIL-STD-202	Method 204	Condition D	20g, 10 to 2 KHz
Vibra	ation – Random	MIL-STD-202	Method 214	Condition 1	30g rms, 10 to 2 KHz Random
Shoo	ck	MIL-STD-202	Method 213	Condition I	100g, 6 ms, F:1500, 0.5 ms
Seal	Test	MIL-STD-883	Method 1014	Condition A1	Fine Leak
Seal	Test	MIL-STD-883	Method 1014	Condition C1	Gross Leak
Temp	perature Cycling	MIL-STD-883	Method 1010	Condition B	10 Cycles Minimum
Cons	stant Acceleration	MIL-STD-883	Method 2001	Condition A	5000g, Y1 Axis
Ther	mal Shock	MIL-STD-202	Method 107	Condition B	

continued	

Environmental	Specification	Method	Condition
Ambient Pressure	MIL-STD-202	Method 105	Condition C
Resistance to Soldering Heat	MIL-STD-202	Method 210	Condition C
Moisture Resistance	MIL-STD-202	Method 106	with 7B Sub-cycle
Salt Atmosphere (corrosion)	MIL-STD-883	Method 1009	Condition A (24 hrs)
Terminal Strength	MIL-STD-202	Method 211	Test Condition D
Solderability	MIL-STD-883	Method 2003	
Resistance to Solvents	MIL-STD-202	Method 215	

note: other options, screening levels and custom test plans available.

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2015 Pb-free RoHS Certified

Helpful & Relevant Reference Specifications

MIL-PRF-55310 Oscillators, Crystal Controlled, General Specification For
MIL-PRF-38534 Hybrid Microcircuits, General Specification For
MIL-STD-202 Test Method Standard, Electronic and Electrical Components
Test Methods and Procedures for Microelectronics
MIL-STD-1686 Electrostatic Discharge Control Program for Protection of
Electrical and Electronic Parts, Assemblies and Equipment

Materials

- 1. Package Materials: Ceramic, Alumina 90% min
- 2. Pad Plating Material: Gold Plate 0.3 μm (12 μ inch) over 2 μm (80 μ inch) min. Nickel

Products for Space Applications

Contact us for assistance with your **higher level specifications**. We will provide you with the technical support and the required documentation.

Issue 11_12192023

Ph. 714 373 8100 Fx. 714 373 8700